EMG-based decoding of grasp gestures in reaching-to-grasping motions
نویسندگان
چکیده
Predicting the grasping function during reach-to-grasp motions is essential for controlling a prosthetic hand or a robotic assistive device. An early accurate prediction increases the usability and the comfort of a prosthetic device. This work proposes an electromyographic-based learning approach that decodes the grasping intention at an early stage of reach-to-grasp motion, i.e. before the final grasp/hand pre-shape takes place. Superficial electrodes and a Cyberglove were used to record the arm muscle activity and the finger joints during reach-to-grasp motions. Our results showed a 90% accuracy for the detection of the final grasp about 0.5 s aftermotion onset. This paper also examines the effect of different objects’ distances and different motion speeds on the detection time and accuracy of the classifier. The use of our learning approach to control a 16-degrees of freedom robotic hand confirmed the usability of our approach for the real-time control of robotic devices. © 2017 Elsevier B.V. All rights reserved.
منابع مشابه
Probing the reaching–grasping network in humans through multivoxel pattern decoding
INTRODUCTION The quest for a putative human homolog of the reaching-grasping network identified in monkeys has been the focus of many neuropsychological and neuroimaging studies in recent years. These studies have shown that the network underlying reaching-only and reach-to-grasp movements includes the superior parieto-occipital cortex (SPOC), the anterior part of the human intraparietal sulcus...
متن کاملClassification of Upper Limb Motions from Around-Shoulder Muscle Activities: Hand Biofeedback
Mining information from EMG signals to detect complex motion intention has attracted growing research attention, especially for upper-limb prosthetic hand applications. In most of the studies, recordings of forearm muscle activities were used as the signal sources, from which the intention of wrist and hand motions were detected using pattern recognition technology. However, most daily-life upp...
متن کاملLearning Reach-to-Grasp Motions From Human Demonstrations
R eaching over to grasp an item is arguably the most commonly used motor skill by humans. Even under sudden perturbations, humans seem to react rapidly and adapt their motion to guarantee success. Despite the apparent ease and frequency with which we use this ability, a complete understanding of the underlying mechanisms cannot be claimed. It is partly due to such incomplete knowledge that adap...
متن کاملInformation Analysis on Neural Tuning in Dorsal Premotor Cortex for Reaching and Grasping
Previous studies have shown that the dorsal premotor cortex (PMd) neurons are relevant to reaching as well as grasping. In order to investigate their specific contribution to reaching and grasping, respectively, we design two experimental paradigms to separate these two factors. Two monkeys are instructed to reach in four directions but grasp the same object and grasp four different objects but...
متن کاملShape-Primitive Based Object Recognition and Grasping
Grasping objects from unstructured piles is an important, but difficult task. We present a new framework to grasp objects composed of shape primitives like cylinders and spheres. For object recognition, we employ efficient shape primitive detection methods in 3D point clouds. Object models composed of such primitives are then found in the detected shapes with a probabilistic graph-matching tech...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 91 شماره
صفحات -
تاریخ انتشار 2017